Adaptive Threshold for Detecting Significant Fold Changes in Microarray Data
نویسندگان
چکیده
To detect significant changes in gene expression, a threshold for fold change, which is a fixed value for all genes, is widely used. However, it is not always guaranteed that a value which is appropriate for highly expressed genes is suitable for genes with low expression. In this study, aiming at detecting significant changes from a wide range of expression levels, we propose an adaptive threshold for fold changes.
منابع مشابه
Adaptive thresholds to detect differentially expressed genes in microarray data
To detect changes in gene expression data from microarrays, a fixed threshold for fold difference is used widely. However, it is not always guaranteed that a threshold value which is appropriate for highly expressed genes is suitable for lowly expressed genes. In this study, aiming at detecting truly differentially expressed genes from a wide expression range, we proposed an adaptive threshold ...
متن کاملCalculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray experiments
MOTIVATION We present statistical methods for determining the number of per gene replicate spots required in microarray experiments. The purpose of these methods is to obtain an estimate of the sampling variability present in microarray data, and to determine the number of replicate spots required to achieve a high probability of detecting a significant fold change in gene expression, while mai...
متن کاملRobust semiparametric mixing for detecting differentially expressed genes in microarray experiments
An important goal of microarray studies is the detection of genes that show significant changes in observed expressions when two or more classes of biological samples such as treatment and control are compared. Using the c-fold rule, a gene is declared to be differentially expressed if its average expression level varies by more than a constant factor c between treatment and control (typically ...
متن کاملLong-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)
Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...
متن کاملDetecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems
vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...
متن کامل